26 research outputs found

    CO Reduction to CH_3OSiMe_3: Electrophile-Promoted Hydride Migration at a Single Fe Site

    Get PDF
    One of the major challenges associated with developing molecular Fischer–Tropsch catalysts is the design of systems that promote the formation of C–H bonds from H_2 and CO while also facilitating the release of the resulting CO-derived organic products. To this end, we describe the synthesis of reduced iron-hydride/carbonyl complexes that enable an electrophile-promoted hydride migration process, resulting in the reduction of coordinated CO to a siloxymethyl (LnFe-CH_2OSiMe_3) group. Intramolecular hydride-to-CO migrations are extremely rare, and to our knowledge the system described herein is the first example where such a process can be accessed from a thermally stable M(CO)(H) complex. Further addition of H_2 to LnFe-CH_2OSiMe_3 releases CH_3OSiMe_3, demonstrating net four-electron reduction of CO to CH_3OSiMe_3 at a single Fe site

    Electrophile-promoted Fe-to-N_2 hydride migration in highly reduced Fe(N_2)(H) complexes

    Get PDF
    One of the emerging challenges associated with developing robust synthetic nitrogen fixation catalysts is the competitive formation of hydride species that can play a role in catalyst deactivation or lead to undesired hydrogen evolution reactivity (HER). It is hence desirable to devise synthetic systems where metal hydrides can migrate directly to coordinated N2 in reductive N–H bond-forming steps, thereby enabling productive incorporation into desired reduced N_2-products. Relevant examples of this type of reactivity in synthetic model systems are limited. In this manuscript we describe the migration of an iron hydride (Fe-H) to N_α of a disilylhydrazido(2-) ligand (Fe=NNR_2) derived from N_2 via double-silylation in a preceding step. This is an uncommon reactivity pattern in general; well-characterized examples of hydride/alkyl migrations to metal heteroatom bonds (e.g., (R)M=NR′ → M–N(R)R′) are very rare. Mechanistic data establish the Fe-to-N_α hydride migration to be intramolecular. The resulting disilylhydrazido(1-) intermediate can be isolated by trapping with CN^tBu, and the disilylhydrazine product can then be liberated upon treatment with an additional acid equivalent, demonstrating the net incorporation of an Fe-H equivalent into an N-fixed product

    Dihydrogen Adduct (Co-H₂) Complexes Displaying H-atom and Hydride Transfer

    Get PDF
    The prototypical reactivity profiles of transition metal dihydrogen complexes (M‐H₂) are well‐characterized with respect to oxidative addition (to afford dihydrides, M(H)₂) and as acids, heterolytically delivering H⁺ to a base and H⁻ to the metal. In the course of this study we explored plausible alternative pathways for H₂ activation, namely direct activation through H‐atom or hydride transfer from the σ‐H₂ adducts. To this end, we describe herein the reactivity of an isostructural pair of a neutral S = ½ and an anionic S = 0 Co‐H₂ adduct, both supported by a trisphosphine borane ligand (P₃^B). The thermally stable metalloradical, (P₃^B)Co(H₂), serves as a competent precursor for hydrogen atom transfer to ᵗBu₃ArO·. What is more, its anionic derivative, the dihydrogen complex [(P₃^B)Co(H₂)]¹⁻, is a competent precursor for hydride transfer to BEt₃, establishing its remarkable hydricity. The latter finding is essentially without precedent among the vast number of M‐H₂ complexes known

    Dihydrogen Adduct (Co-H₂) Complexes Displaying H-atom and Hydride Transfer

    Get PDF
    The prototypical reactivity profiles of transition metal dihydrogen complexes (M‐H₂) are well‐characterized with respect to oxidative addition (to afford dihydrides, M(H)₂) and as acids, heterolytically delivering H⁺ to a base and H⁻ to the metal. In the course of this study we explored plausible alternative pathways for H₂ activation, namely direct activation through H‐atom or hydride transfer from the σ‐H₂ adducts. To this end, we describe herein the reactivity of an isostructural pair of a neutral S = ½ and an anionic S = 0 Co‐H₂ adduct, both supported by a trisphosphine borane ligand (P₃^B). The thermally stable metalloradical, (P₃^B)Co(H₂), serves as a competent precursor for hydrogen atom transfer to ᵗBu₃ArO·. What is more, its anionic derivative, the dihydrogen complex [(P₃^B)Co(H₂)]¹⁻, is a competent precursor for hydride transfer to BEt₃, establishing its remarkable hydricity. The latter finding is essentially without precedent among the vast number of M‐H₂ complexes known

    Synthesis and functionalization reactivity of Fe-thiocarbonyl and thiocarbyne complexes

    Get PDF
    The remarkable catalytic transformation of CO to liquid hydrocarbons by Fe and Co catalysts in the industrial Fischer-Tropsch process motivates interest in developing well-defined systems to model aspects of this chemistry. One of the most interesting potential intermediates in this chemistry is a terminally-bound, first row metal carbide, yet a molecular model of this species remains elusive. With this in mind, we targeted the synthesis of highly-activated Fe-thiocarbonyl complexes, as prospective precursors to S-functionalization, C–S bond cleavage, and carbide generation. Herein, we describe the synthesis of three Fe–CS complexes that can be alkylated to generate a series of terminal Fe-carbynes that could be characterized across three oxidation states. Strategies to access C–S bond scission from these species are discussed, including limitations that, thus far, have precluded the generation of a terminal Fe-carbide for this system

    CO Reduction to CH_3OSiMe_3: Electrophile-Promoted Hydride Migration at a Single Fe Site

    Get PDF
    One of the major challenges associated with developing molecular Fischer–Tropsch catalysts is the design of systems that promote the formation of C–H bonds from H_2 and CO while also facilitating the release of the resulting CO-derived organic products. To this end, we describe the synthesis of reduced iron-hydride/carbonyl complexes that enable an electrophile-promoted hydride migration process, resulting in the reduction of coordinated CO to a siloxymethyl (LnFe-CH_2OSiMe_3) group. Intramolecular hydride-to-CO migrations are extremely rare, and to our knowledge the system described herein is the first example where such a process can be accessed from a thermally stable M(CO)(H) complex. Further addition of H_2 to LnFe-CH_2OSiMe_3 releases CH_3OSiMe_3, demonstrating net four-electron reduction of CO to CH_3OSiMe_3 at a single Fe site

    Enhancing Discovery of Genetic Variants for Posttraumatic Stress Disorder Through Integration of Quantitative Phenotypes and Trauma Exposure Information

    Get PDF
    Funding Information: This work was supported by the National Institute of Mental Health / U.S. Army Medical Research and Development Command (Grant No. R01MH106595 [to CMN, IL, MBS, KJRe, and KCK], National Institutes of Health (Grant No. 5U01MH109539 to the Psychiatric Genomics Consortium ), and Brain & Behavior Research Foundation (Young Investigator Grant [to KWC]). Genotyping of samples was provided in part through the Stanley Center for Psychiatric Genetics at the Broad Institute supported by Cohen Veterans Bioscience . Statistical analyses were carried out on the LISA/Genetic Cluster Computer ( https://userinfo.surfsara.nl/systems/lisa ) hosted by SURFsara. This research has been conducted using the UK Biobank resource (Application No. 41209). This work would have not been possible without the financial support provided by Cohen Veterans Bioscience, the Stanley Center for Psychiatric Genetics at the Broad Institute, and One Mind. Funding Information: MBS has in the past 3 years received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech and has stock options in Oxeia Biopharmaceuticals and Epivario. In the past 3 years, NPD has held a part-time paid position at Cohen Veterans Bioscience, has been a consultant for Sunovion Pharmaceuticals, and is on the scientific advisory board for Sentio Solutions for unrelated work. In the past 3 years, KJRe has been a consultant for Datastat, Inc., RallyPoint Networks, Inc., Sage Pharmaceuticals, and Takeda. JLM-K has received funding and a speaking fee from COMPASS Pathways. MU has been a consultant for System Analytic. HRK is a member of the Dicerna scientific advisory board and a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative, which during the past 3 years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. HRK and JG are named as inventors on Patent Cooperative Treaty patent application number 15/878,640, entitled “Genotype-guided dosing of opioid agonists,” filed January 24, 2018. RP and JG are paid for their editorial work on the journal Complex Psychiatry. OAA is a consultant to HealthLytix. All other authors report no biomedical financial interests or potential conflicts of interest. Funding Information: This work was supported by the National Institute of Mental Health/ U.S. Army Medical Research and Development Command (Grant No. R01MH106595 [to CMN, IL, MBS, KJRe, and KCK], National Institutes of Health (Grant No. 5U01MH109539 to the Psychiatric Genomics Consortium), and Brain & Behavior Research Foundation (Young Investigator Grant [to KWC]). Genotyping of samples was provided in part through the Stanley Center for Psychiatric Genetics at the Broad Institute supported by Cohen Veterans Bioscience. Statistical analyses were carried out on the LISA/Genetic Cluster Computer (https://userinfo.surfsara.nl/systems/lisa) hosted by SURFsara. This research has been conducted using the UK Biobank resource (Application No. 41209). This work would have not been possible without the financial support provided by Cohen Veterans Bioscience, the Stanley Center for Psychiatric Genetics at the Broad Institute, and One Mind. This material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting true views of the U.S. Department of the Army or the Department of Defense. We thank the investigators who comprise the PGC-PTSD working group and especially the more than 206,000 research participants worldwide who shared their life experiences and biological samples with PGC-PTSD investigators. We thank Mark Zervas for his critical input. Full acknowledgments are in Supplement 1. MBS has in the past 3 years received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech and has stock options in Oxeia Biopharmaceuticals and Epivario. In the past 3 years, NPD has held a part-time paid position at Cohen Veterans Bioscience, has been a consultant for Sunovion Pharmaceuticals, and is on the scientific advisory board for Sentio Solutions for unrelated work. In the past 3 years, KJRe has been a consultant for Datastat, Inc. RallyPoint Networks, Inc. Sage Pharmaceuticals, and Takeda. JLM-K has received funding and a speaking fee from COMPASS Pathways. MU has been a consultant for System Analytic. HRK is a member of the Dicerna scientific advisory board and a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative, which during the past 3 years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. HRK and JG are named as inventors on Patent Cooperative Treaty patent application number 15/878,640, entitled ?Genotype-guided dosing of opioid agonists,? filed January 24, 2018. RP and JG are paid for their editorial work on the journal Complex Psychiatry. OAA is a consultant to HealthLytix. All other authors report no biomedical financial interests or potential conflicts of interest. Publisher Copyright: © 2021 Society of Biological PsychiatryBackground: Posttraumatic stress disorder (PTSD) is heritable and a potential consequence of exposure to traumatic stress. Evidence suggests that a quantitative approach to PTSD phenotype measurement and incorporation of lifetime trauma exposure (LTE) information could enhance the discovery power of PTSD genome-wide association studies (GWASs). Methods: A GWAS on PTSD symptoms was performed in 51 cohorts followed by a fixed-effects meta-analysis (N = 182,199 European ancestry participants). A GWAS of LTE burden was performed in the UK Biobank cohort (N = 132,988). Genetic correlations were evaluated with linkage disequilibrium score regression. Multivariate analysis was performed using Multi-Trait Analysis of GWAS. Functional mapping and annotation of leading loci was performed with FUMA. Replication was evaluated using the Million Veteran Program GWAS of PTSD total symptoms. Results: GWASs of PTSD symptoms and LTE burden identified 5 and 6 independent genome-wide significant loci, respectively. There was a 72% genetic correlation between PTSD and LTE. PTSD and LTE showed largely similar patterns of genetic correlation with other traits, albeit with some distinctions. Adjusting PTSD for LTE reduced PTSD heritability by 31%. Multivariate analysis of PTSD and LTE increased the effective sample size of the PTSD GWAS by 20% and identified 4 additional loci. Four of these 9 PTSD loci were independently replicated in the Million Veteran Program. Conclusions: Through using a quantitative trait measure of PTSD, we identified novel risk loci not previously identified using prior case-control analyses. PTSD and LTE have a high genetic overlap that can be leveraged to increase discovery power through multivariate methods.publishersversionpublishe

    CO Reduction to CH<sub>3</sub>OSiMe<sub>3</sub>: Electrophile-Promoted Hydride Migration at a Single Fe Site

    No full text
    One of the major challenges associated with developing molecular Fischer–Tropsch catalysts is the design of systems that promote the formation of C–H bonds from H<sub>2</sub> and CO while also facilitating the release of the resulting CO-derived organic products. To this end, we describe the synthesis of reduced iron-hydride/carbonyl complexes that enable an electrophile-promoted hydride migration process, resulting in the reduction of coordinated CO to a siloxymethyl (L<sub><i>n</i></sub>Fe-<i>CH</i><sub><i>2</i></sub><i>OSiMe</i><sub>3</sub>) group. Intramolecular hydride-to-CO migrations are extremely rare, and to our knowledge the system described herein is the first example where such a process can be accessed from a thermally stable M­(CO)­(H) complex. Further addition of H<sub>2</sub> to L<sub><i>n</i></sub>Fe-CH<sub>2</sub>OSiMe<sub>3</sub> releases CH<sub>3</sub>OSiMe<sub>3</sub>, demonstrating net four-electron reduction of CO to CH<sub>3</sub>OSiMe<sub>3</sub> at a single Fe site
    corecore